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A B S T R A C T

Brain graphs are powerful representations to explore the biological roadmaps of the human brain in its
healthy and disordered states. Recently, a few graph neural networks (GNNs) have been designed for brain
connectivity synthesis and diagnosis. However, such non-Euclidean deep learning architectures might fail to
capture the neural interactions between different brain regions as they are trained without guidance from
any prior biological template—i.e., template-free learning. Here we assume that using a population-driven brain
connectional template (CBT) that captures well the connectivity patterns fingerprinting a given brain state
(e.g., healthy) can better guide the GNN training in its downstream learning task such as classification or
regression. To this aim we design a plug-in graph registration network (GRN) that can be coupled with any
conventional graph neural network (GNN) so as to boost its learning accuracy and generalizability to unseen
samples. Our GRN is a graph generative adversarial network (gGAN), which registers brain graphs to a prior
CBT. Next, the registered brain graphs are used to train typical GNN models. Our GRN can be integrated into
any GNN working in an end-to-end fashion to boost its prediction accuracy. Our experiments showed that
GRN remarkably boosted the prediction accuracy of four conventional GNN models across four neurological
datasets.
1. Introduction

Deep Learning (DL) has dominated the research field of clinical
decision making including brain disease diagnosis (Suzuki, 2017; Lee
et al., 2017). Recent works (Asiri et al., 2019) designing computer-
aided diagnosis (CAD) systems have integrated DL diagnosis models
to be more robust and powerful in discriminating between disordered
and healthy patients. DL has an outstanding ability to learn multi-level
representation of medical imaging data such as Magnetic Resonance
Imaging (MRI) or resting-state functional MRI (rs-fMRI) (Suzuki, 2017;
Lee et al., 2017). Such non-invasive imaging technologies provide
anatomical features such as gray matter volumes and cortical thickness
as potential clinical biomarkers of particular neurological disorders—
to mention just a few. However, the brain is a compound, highly and
internally connected system. Thus, such simple features might fail to
capture the brain interconnectedness (van den Heuvel and Sporns,
2019; Fornito et al., 2015). Thanks to their ability to represent connec-
tions between different entities, graphs are powerful representations to
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exhibit the relational information between different anatomical regions
of interest (ROIs) in the brain.

Several studies on brain graph analysis focused on node classifica-
tion, link prediction, and graph classification using particular machine
learning (ML) methods (Richiardi et al., 2013; Du et al., 2018). For in-
stance, Khazaee et al. (2015) constructed connectivity matrices derived
from rs-fMRI data and performed statistical analysis using ANOVA and
forward sequential feature selection to obtain discriminative feature
vectors. Next, they trained a support vector machine (SVM) classifier
based on these discriminative feature vectors to distinguish between
Alzheimer’s (AD), Mild Cognitive Impairment (MCI), and healthy pa-
tients. A very recent paper (Bilgen et al., 2020) examined a diverse
pool of machine learning pipelines in classifying cortical brain net-
works. Nonetheless, traditional ML methods merely work for a specific
task or a dataset and rarely generalize to other datasets and tasks
which indicates that they lack the ability of generalizability. There-
fore, Graph Neural Networks (GNN) come forward with their higher
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Fig. 1. Illustration of classification network concept (A) Our graph registration framework registers input brain graphs to a prior connectional brain template (CBT). (B) We input the
registered brain graphs to conventional graph neural networks for classification. Our model is trained in an end-to-end fashion and back-propagates through the whole network.
R: registration network. D: discriminator network.
generalizability to non-Euclidean data and powerful performance. How-
ever, there are very limited works on Graph Neural Networks (GNNs)
for brain graph classification as reported in a recent review paper
(Bessadok et al., 2022).

For graph classification and graph representation, Geometric Deep
Learning (GDL) has become a leading focal point in various areas such
as social science (Hamilton et al., 2018), e-commerce networks (Li
et al., 2020), natural science (biology networks) (Bove et al., 2020),
and traffic networks (Diehl et al., 2019; Mallick et al., 2020). GNNs
root in several fundamental concepts (Zhou et al., 2018), which are
Convolutional Neural Networks (CNNs) and graph embedding—to men-
tion just a few. CNNs with multi-layer architectures extract high-order
representations from raw input data to map them into the desired
output. The multi-layer architecture helps attain valuable information
from hierarchical patterns, which refer to non-Euclidean data of graphs.
Also, CNNs acknowledge regional connections in images, which are
the fundamental data source of CNNs, by reconstructing their localized
spatial features. Therefore, CNN is a strong concept to adapt for GNNs.
Accordingly, Kipf and Welling (2017) proposed Graph Convolutional
Network (GCN), which applies convolutional operations to graphs to
learn a hidden layer that captures both local graph structures and
node features and scales the graph edges to a desired output feature
map. Another work (Veličković et al., 2018) introduced Graph Atten-
tional Network (GAT), an attention-based architecture that generates
hidden representations for each node in a graph by calculating the
importance of each neighbor. These GNN methods reproduce features
from the graph edges linearly and overlook to learn the hierarchical
representations of graphs, which might be questionable over the graph
2

classification task where the aim is to try to predict the label of an
entire graph. To overcome this limitation, Ying et al. (2019) proposed
DiffPool, a differentiable graph pooling module for hierarchical graph
representation. DiffPool embeds graphs using GNNs and clusters these
embeddings as nodes to generate a new graph at each hierarchical
layer. The number of layers is a hyperparameter and the last layer
outputs the classified label. Lastly, Gao and Ji (2019) came up with
an encoder–decoder architecture for graphs and introduced graph U-
Nets (g-U-Nets), which consists of graph pooling (gPool) and graph
un-pooling (gUnpool) blocks.

Although such conventional models deliver powerful performance
in several graph applications, they have some limitations when the
task domain is network neuroscience due to the complexity and richness
of brain connectivity graphs (Bessadok et al., 2022). In fact, brain
connectomes are biological roadmaps of brain connections between
different anatomical ROIs. It is hence crucial to preserve the topological
soundness of such biological roadmaps in downstream learning tasks
such as brain synthesis, classification or regression (Bessadok et al.,
2022). Besides, existing GNN architectures might fail to capture the
neural interactions between different brain regions as they are trained
without guidance from any prior biological template—i.e., template-free
learning (Bessadok et al., 2022). The concept of template-based learning
is commonly used on Euclidean data such as images. In fact, image-
based brain atlases or templates are commonly used to register an
input image to a prior image-based template (e.g., MRI) for abnormality
detection, disorder diagnosis, brain mapping and evolution trajectory
prediction—among other purposes (Fan et al., 2006; Davatzikos et al.,
2011; Kim et al., 2016; Min et al., 2014; Liu et al., 2015; Gafuroglu
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and Rekik, 2019; Li et al., 2019). Simply put, image registration aims
to apply a geometric transformation to input images for aligning them
onto a fixed prior image. The minimization of the difference between
the aligned image and the fixed image template determines the suc-
cess in image registration. A considerable amount of studies worked
on image registration in medical imaging for various tasks (Sokooti
et al., 2017; Hu et al., 2018; Balakrishnan et al., 2019; de Vos et al.,
2019). However, while there is an abundance of image-based registration
methods in the neuroscience and neuroimaging literature, graph-based
registration remains an uncharted territory.

To fill this gap and motivated by the outperformance template-
guided or atlas-guided learning tasks over the template-free methods,
we set out to generalize the concept of image registration to graphs and
demonstrate its value in boosting classification accuracy of brain states.
Here, we assume that using a population-driven brain connectional
template (CBT) (Rekik et al., 2017; Dhifallah and Rekik, 2020; Gurbuz
and Rekik, 2020; Gürbüz and Rekik, 2021) that captures well the
connectivity patterns fingerprinting a given brain state (e.g., healthy)
can better guide the GNN training in its downstream learning task such
as classification or regression. Specifically, we drive inspiration from
the recent works on integrational network neuroscience where CBTs are
derived from input brain graph populations (Dhifallah and Rekik, 2020;
Gurbuz and Rekik, 2020) and propose a Graph Registration Network
(GRN). Our GRN acts as a plug-in network that can be coupled with any
conventional graph neural network in an end-to-end fashion to boost its
learning accuracy and generalizability to unseen samples. Particularly,
our GRN is a graph generative adversarial network (gGAN), which
registers brain graphs to a prior CBT. Training in an end-to-end fashion
makes each step act dependently with each other and send feedback
to each other, which helps optimize the learning process. Next, the
registered brain graphs are used to train typical GNN models.

Fig. 1 illustrates the main concept of our brain graph registra-
tion and classification framework. First, we register brain graphs with
respect to a graph-based template (here CBT) and obtain registered
brain graphs that preserve the common interactional neural patterns.
Registering the input brain graphs to a prior CBT might help preserve
the brain topology and also better bring out the unique features of
individual brain graphs. In fact, such graph registration step will enable
to tease apart the individuality of each brain connectome by simply
comparing its registered version with the prior population CBT. The
registered brain graphs are then inputted to the conventional GNNs
as they better capture the individual traits of their topology for the
target learning task (e.g., classification). Below, we articulate the main
contributions of our work at different levels:

1. We propose a plug-in network that can eventually work with
other GNN architecture and be combined with other downstream
learning tasks.

2. We propose a network that works in an end-to-end manner
by optimizing a joint loss function of both registration and
classification networks at each iteration.

3. Our GRN generalizes the registration concept to graphs to boost
the classification performance of any GNN architecture.

4. Our plug-in GRN is a generic model. It can be trained using any
type of graph templates (e.g., genomic and any omic template).

2. Methodology

In this section, we detail our GRN for boosting GNN based classifiers
for neurological disorders diagnosis. Table 1 displays the mathematical
notations that we use throughout this paper. We denote the matrices as
boldface capital letters, e.g., 𝐗, and scalars as lowercase letters, e.g., 𝑛.
We illustrate in Fig. 2 the two proposed steps: (1) registration of input
graphs into the population CBT and (2) classification of the registered
3

brain graphs by the GRN plug-in.
Table 1
Major mathematical notations.

Mathematical notation Definition

𝑛𝑠 Total number of subjects
𝑛 Total number of training subjects
𝑛𝑟 Total number of regions of interest in the brain
𝑛𝑐𝑏𝑡 Total number of independent brain graphs for CBT

generation
𝐘𝑏 Brain connectivity matrix of brain graph 𝑏
 Tensor ∈ R𝑛𝑟×𝑛𝑟×𝑛𝑐𝑏𝑡×𝑛𝑐𝑏𝑡 comprising of high-order graphs

(𝑖,𝑗), 1 ≤ 𝑖, 𝑗 ≤ 𝑛𝑟
(𝑖,𝑗) High-order graph ∈ R𝑛𝑐𝑏𝑡×𝑛𝑐𝑏𝑡 defined for a ROI pair 𝑖

and 𝑗
 Tensor ∈ R𝑛𝑟×𝑛𝑟×𝑛𝑐𝑏𝑡 comprising of distance vectors (𝑖,𝑗)
(𝑖,𝑗)(𝑏) Node weight of brain graph 𝑏 in the high-order graph

(𝑖,𝑗)
𝐗𝐶𝐵𝑇 Connectional brain template connectivity matrix
𝐗𝑡𝑟 = {𝐗𝑡𝑟

1 ,… ,𝐗𝑡𝑟
𝑛 } Training brain graph connectivity matrices ∈ R𝑛×𝑛𝑟×𝑛𝑟

𝐗̂𝐶𝐵𝑇 = {𝐗̂𝐶𝐵𝑇
1 ,… , 𝐗̂𝐶𝐵𝑇

𝑛 } Registered brain graph connectivity matrices ∈ R𝑛×𝑛𝑟×𝑛𝑟

𝑅 gGAN registration network
𝐷 gGAN CBT-guided discriminator
𝑓𝑢𝑙𝑙 Full loss function
𝑟 Registration loss function
𝑎𝑑𝑣 Adversarial loss function
𝐿1

𝑙1 loss function
𝑔𝑛𝑛 Plug-in GNN loss function
𝜆 Coefficient of 𝑙1 loss
𝑉 A set of 𝑛𝑟 nodes
𝐸 A set of 𝑚𝑟 directed or undirected edges
𝑙 Index of layer
𝑇 𝑙 Transformation matrix ∈ R𝑛𝑟×𝑑𝑙

𝐿 Transformation matrix ∈ R𝑚𝑟×𝑑𝑠

 (𝑖) The neighborhood containing all the adjacent vertices
of vertex 𝑖

𝑇 𝑙(𝑖) Filtered signal of vertex 𝑖 ∈ R𝑑𝑙

𝐹 𝑙
𝑗𝑖 Filter generating network

𝜔𝑙 Weight parameter
𝑏𝑙 Bias parameter

2.1. Connectional brain template (CBT) generation

A CBT is a brain graph template, which is normalized with respect to
a population of brain graphs capturing the most centered, shared, and
representative traits across a given brain graph population. It is also
viewed as an average connectome and provides a representative map
that holds the unique and distinctive connectivity patterns of a given
population. Therefore, we assume that if a brain connectome can be
registered to such a template with unique and distinctive features, the
registered versions of the brain graphs can carry the individual connec-
tivity patterns of each brain graph with respect to the population. There
are several works in CBT derivation from a brain graph or multigraph
populations (Rekik et al., 2017; Dhifallah and Rekik, 2019). A recent
work (Gurbuz and Rekik, 2020) introduced Deep Graph Normalizer
(DGN), the first GDL network to normalize a population of multi-view
brain networks by integrating them into a single template. Dhifallah
and Rekik (2020) proposed netNorm, which performs multi-view brain
graph normalization to determine connectivities that are mostly af-
fected by neurological disorders by comparing CBTs of different brain
states (i.e., healthy vs. disordered). netNorm is designed for fusing
a population of multi-view brain connectomes, where each brain is
represented by a set of graphs, each capturing a particular connectional
view of the brain. netNorm proposes a view-specific brain connectivity
selection strategy where the most centered sample is selected for each
pair of ROIs. This leads to the estimation of a centered population mul-
tiview graph. Next, a diffusion-based fusion strategy (Wang et al., 2014)
is used to merge the view of the population graph, thereby producing
the population CBT, encoded in a connectivity matrix. Without loss of
generality, in this paper we use netNorm (Dhifallah and Rekik, 2020)
to generate population CBTs. However, any other alternative approach
can be adopted (Gurbuz and Rekik, 2020). Here, we learn the CBT using
an independent brain graph dataset with 𝑛 subjects.
𝑐𝑏𝑡
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Fig. 2. Proposed Template-based Graph Registration Network (GRN). (A) Graph registration network. We propose a graph GAN (gGAN) architecture that learns to register brain graphs
to a prior connectional brain template (CBT). We construct a three-layer graph convolutional neural network acting as an encoder–decoder that mimics a U-net architecture. Our
registration network takes as input a set of 𝑛 training brain graphs 𝐗𝑡𝑟 and outputs a set of 𝐗̂𝐶𝐵𝑇 sharing the same distribution as the prior CBT. (B) CBT-based discriminator. We
design a two-layer graph convolutional neural network that differentiates between the real CBT and the registered brain graphs 𝐗̂𝐶𝐵𝑇 . Basically, the discriminator decides whether
the registered brain graph is a real CBT or not. (C) GNN classifier. We input the registered brain graphs 𝐗̂𝐶𝐵𝑇 to train a conventional graph neural network for classification.
We denote the connectivity between ROIs 𝑖 and 𝑗 (1 ≤ 𝑖, 𝑗 ≤ 𝑛𝑟)
of a brain graph 𝑏 as 𝐘𝑏

(𝑖,𝑗) and define a tensor  ∈ R𝑛𝑟×𝑛𝑟×𝑛𝑐𝑏𝑡×𝑛𝑐𝑏𝑡 that
consists of high-order graphs, (𝑖,𝑗) ∈ R𝑛𝑐𝑏𝑡×𝑛𝑐𝑏𝑡 (Dhifallah and Rekik,
2020). (𝑖,𝑗) holds the Euclidean distances across all brain graphs for
each ROI pair 𝑖 and 𝑗.

(𝑖,𝑗)(𝑏, 𝑏′) =
√

(𝐘𝑏
(𝑖,𝑗) − 𝐘𝑏′

(𝑖,𝑗))
2; ∀1 ≤ 𝑏, 𝑏′ ≤ 𝑛𝑐𝑏𝑡 (1)

For each brain graph 𝑏, we define a tensor  ∈ R𝑛𝑟×𝑛𝑟×𝑛𝑐𝑏𝑡 , where
(𝑖,𝑗)(𝑏) holds the cumulative distance between brain graph 𝑏 and other
brain graphs in the population for each ROI pair connectivity (𝑖, 𝑗),
hence shows the topological weight of brain graph 𝑏 in the high-order
4

graph (𝑖,𝑗).

(𝑖,𝑗)(𝑏) =
𝑛𝑐𝑏𝑡
∑

𝑏′=1
(𝑖,𝑗)(𝑏, 𝑏′) =

𝑛𝑐𝑏𝑡
∑

𝑏′=1

√

(𝐘𝑏
(𝑖,𝑗) − 𝐘𝑏′

(𝑖,𝑗))
2; ∀1 ≤ 𝑏, 𝑏′ ≤ 𝑛𝑐𝑏𝑡 (2)

We assume that a pairwise connection of the closest brain graph to
all other brain graphs in the population determines the most represen-
tative and centered connection. Therefore, for each brain connectivity
(𝑖, 𝑗), we select the connectivity weight of the brain graph with the
minimum cumulative distance to all other brain graphs and construct
the CBT as follows Dhifallah and Rekik (2020):

𝐗𝐶𝐵𝑇
(𝑖,𝑗) = 𝐘𝑘

(𝑖,𝑗);𝑤ℎ𝑒𝑟𝑒 𝑘 = argmin(𝑖,𝑗)(𝑏) (3)

1≤𝑏≤𝑛𝑐𝑏𝑡



Computerized Medical Imaging and Graphics 103 (2023) 102140Z. Gürler et al.
2.2. Graph generative adversarial network (gGAN)

GANs are generative deep learning models that consist of two
competing neural networks, namely a generator and a discriminator,
first introduced by Goodfellow et al. (2014). The generator has an
encoder–decoder architecture for learning how to generate fake output
by mapping input data to a data distribution of interest while the
discriminator learns to differentiate between ground-truth data and
generated fake samples. While the discriminator learns to better dis-
criminate between fake and real data, the generator tries to generate
even more real-looking fake output to fool the discriminator. GANs
are a good fit to registration task since they have excellent success in
mimicking the original data distribution, thus they are the first choice
when synthesizing any kind of data (Mahapatra, 2018; Zhang et al.,
2020; Zheng et al., 2021). Further, the more successful the registration
(mimicking the target data) is, the more individualized and well-
represented graphs we obtain for the classification task. Therefore, we
pursue with generative adversarial learning method in the registration
process. A recent research (Gurler et al., 2020) proposed gGAN, the
first graph-based GAN with a graph generator and a discriminator,
which we leverage to design our registration network architecture. Our
registration loss consists of an adversarial loss and an 𝑙1 loss term. Since
𝑙1 loss is effective in preserving general characteristics of the data and
robust to sample outliers (Anagun et al., 2019), we further add the 𝑙1
loss to improve the registered brain graph quality. Hence we express
our registration loss function as follows:

𝑟 = 𝑎𝑑𝑣 + 𝜆𝑙𝐿1(𝑅) (4)

This includes an adversarial loss optimized as follows Goodfellow
et al. (2014):

𝑎
𝑅
𝑟𝑔𝑚𝑖𝑛𝑚

𝐷
𝑎𝑥𝑎𝑑𝑣 = E𝐷(𝐗𝐶𝐵𝑇 )[𝑙𝑜𝑔𝐷(𝐗𝐶𝐵𝑇 )]

+E𝐷(𝐗̂𝐶𝐵𝑇 )[𝑙𝑜𝑔(1 −𝐷(𝑅(𝐗𝐶𝐵𝑇 )))]

+E𝑅(𝐗𝑡𝑟)[𝑙𝑜𝑔𝑅(𝐗𝑡𝑟)]

(5)

As shown in Fig. 2–A, our proposed GRN consists of a three-layer
encoder–decoder graph convolutional neural network (GCN) inspired
by the dynamic edge convolution operation introduced in Simonovsky
and Komodakis (2017) and imitating a U-net architecture (Ronneberger
et al., 2015) with skip connections, which enables feature reusability
and enhances the decoding process by recovering some lost information
with downsampling. GRN takes a set of 𝐗𝑡𝑟 training subjects as input
and outputs a set of 𝐗̂𝐶𝐵𝑇 , which share the same distribution as the
fixed 𝐗𝐶𝐵𝑇 . Our graph registration network (Fig. 3) contains three
graph convolutional neural network layers to which we apply batch
normalization (Ioffe and Szegedy, 2015) and dropout (Xiao et al., 2016)
to the output of each layer. These two operations make the network
simplified and optimized helping to speed up network training and
avoid overfitting.

We display the architecture of the discriminator in Figs. 2–B and
3. The discriminator is a two-layer graph neural network that takes as
input the GRN output 𝐗̂𝐶𝐵𝑇 and outputs a tensor sized R𝑛𝑟×𝑛𝑟 . Also, to
determine the realness of the registered graph, the discriminator takes
the CBT itself 𝐗𝐶𝐵𝑇 as input and outputs a tensor. Then these two
tensors are sent to the adversarial loss function individually to obtain
2 values characterizing the the realness of 𝐗̂𝐶𝐵𝑇 and 𝐗𝐶𝐵𝑇 . The final
discriminator loss is computed by averaging both losses.

In our GRN architecture, we use graph convolutional layers in-
spired by the dynamic graph-based edge convolution operation pro-
posed by Simonovsky and Komodakis (2017). To perform this graph
convolution operation, we represent a directed or undirected graph
𝐺 = (𝑉 ,𝐸) where 𝑉 is a set of 𝑛𝑟 ROIs and 𝐸 ⊆ 𝑉 × 𝑉 is a set of
𝑚𝑟 edges. Let 𝑙 be the layer index in the neural network. We define
two transformation matrices (i.e., functions) such as 𝐓𝑙 ∶ 𝑉 → R𝑑𝑙

and 𝐋 ∶ 𝐸 → R𝑑𝑠 where 𝐓𝑙 ∈ R𝑛𝑟×𝑑𝑙 and 𝐋 ∈ R𝑚𝑟×𝑑𝑠 . 𝑑𝑠 and 𝑑𝑙 are
dimensionality indexes. We define  (𝑖) = 𝑗; (𝑗, 𝑖) ∈ 𝐸 ∪ 𝑖 , which is
5

{ } { }
Fig. 3. Illustration of the backbone network architecture of our graph registration network
(GRN). GRN consists of a registration network and a discriminator. The registration
network is a three-layer graph convolutional neural network mimicking a U-net
architecture with skip connections (Simonovsky and Komodakis, 2017; Ronneberger
et al., 2015). The discriminator is a two-layer graph convolutional neural network.
Each layer of the registration network and the discriminator consists of one dynamic
edge convolution function followed by a BatchNorm, a ReLu, and a dropout operation
except the discriminator’s last activation function which is a sigmoid.

considered as the neighborhood containing all the adjacent ROIs of a
node 𝑖. The goal of each layer in both the registration network and the
discriminator is to output the graph convolution result which can be
considered as a filtered signal 𝐓𝑙(𝑖) ∈ R𝑑𝑙 at node 𝑖. 𝐓𝑙 is expressed as
follows:

𝐓𝑙(𝑖) = 1
 (𝑖)

∑

𝑗∈ (𝑖)
𝛩𝑙
𝑗𝑖𝐓

𝑙−1(𝑗) + 𝑏𝑙 , (6)

where 𝛩𝑙
𝑗𝑖 = 𝐹 𝑙(𝐿(𝑗, 𝑖);𝜔𝑙). 𝐹 𝑙 ∶ R𝑑𝑠 → R𝑑𝑙×𝑑𝑙−1 is the filter generating

network. We denote 𝜔𝑙 and 𝑏𝑙 as model parameters that are updated
only during training.

2.3. GNN classifier

To classify brain graphs in a population, we couple our plug-in
GRN with a conventional GNN classification architecture (Fig. 1). In
our paper, we use conventional GNNs such as GCN (Kipf and Welling,
2017), GAT (Veličković et al., 2018), DiffPool (Ying et al., 2019) and
graph U-Nets (g-U-Nets) as classifier networks (Gao and Ji, 2019). We
note that a few of these conventional GNNs, namely GCN and GAT,
are not originally designed for graph-based classification task as they
primarily classify nodes in graphs and not whole graphs (Bessadok
et al., 2022). Therefore, in order to adapt both GNNs to be able to
perform whole graph classification, we adapt them as follows. First, we
design the output layer of the GCN as two nodes each one outputting
the probability of the input graph belonging to the corresponding class.
We add a linear layer to the GAT architecture that takes an input tensor
of R𝑛𝑟×1 to learn prediction logits for the whole graph. Before sending
registered graphs to the target GNN, we apply mean-thresholding to
the registered graphs. We compute the mean value of each graph and
assign 0 to the values lower than the mean and 1 to the values greater
than the mean. We assume that restricting values of the vertices to
{0, 1} provides simplicity in input data and helps GNN classifier better
discriminate between classes and not overfit.

We input each registered brain graph 𝐗̂𝐶𝐵𝑇 to the target GNN to
output a class label. Next, we compute the classification loss 𝑔𝑛𝑛 of
the GNN classifier. Our framework learns in an end-to-end fashion and
uses a single loss function to optimize with a back-propagation process
throughout the whole architecture. Therefore, we define the full loss
function as a joint loss function composed of the registration loss 𝑟 of
the registration network and the GNN loss 𝑔𝑛𝑛 of the GNN classifier as
follows:

 =  + 𝜆  (7)
𝑓𝑢𝑙𝑙 𝑟 𝑐 𝑔𝑛𝑛
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GRN consists of dependent graph registration and graph classifica-
tion steps. These fully dependent steps provide feedback to each other
in order to globally optimize the graph classification process thanks to
end-to-end training.

3. Results and discussion

Connectomic dataset. We evaluated our GRN plug-in on two
atasets, where each subject is represented by a morphological brain
raph. The first dataset (300) (ASD/NC dataset) is collected from the
utism Brain Imaging Data Exchange ABIDE I public dataset2 and
onsists of 300 subjects: 150 normal controls (NC) and 150 subjects
ith autism spectrum disorder (ASD) (Martino et al., 2013; Soussia
nd Rekik, 2018). The second dataset (LMCI/AD dataset) is collected
rom Alzheimer’s Disease Neuroimaging Initiative (ADNI) database GO
ublic dataset3 consisting of 77 subjects (Mahjoub et al., 2018): 36 sub-
ects with Late Mild Cognitive Impairment (LMCI) and 41 subjects with
lzheimer disease (AD) (Mueller et al., 2005). The ADNI was launched

n 2003 as a public–private partnership, led by Principal Investigator
ichael W. Weiner, MD. The primary goal of ADNI has been to test
hether serial magnetic resonance imaging (MRI), positron emission

omography (PET), other biological markers, and clinical and neuropsy-
hological assessment can be combined to measure the progression of
ild cognitive impairment (MCI) and early Alzheimer’s disease (AD).
e used FreeSurfer pipeline (Fischl, 2012) to reconstruct both right and

eft cortical hemispheres (RH and LH) for each subject from structural
1-weighted MRI. We parcellated each hemisphere into 35 cortical
egions of interest using Desikan-Killiany atlas (Fischl, 2004). Next, for
ach cortical ROI, we compute the average cortical thickness across
ts vertices. A morphological connectivity weight between two ROIs is
hen computed as the absolute difference between their corresponding
verage cortical thickness values. Morphological brain networks have
ained momentum over the last few years where brain connectivity
s generated from conventional T1-weighted MRI and morphological
issimilarities are quantified between brain regions (Soussia and Rekik,
018; Mahjoub et al., 2018; Nebli and Rekik, 2019; Bilgen et al., 2020;
alçin and Rekik, 2021)
Parameter setting. We empirically tuned and set 𝜆𝑙 for the reg-

stration network to 250 to balance the range difference between the
wo losses and also increase the impact of the L1 loss compared to the
dversarial loss. Further, we varied and empirically set 𝜆𝑐 of the GNN to
nhibit the GRN from dominating the back-propagation and introducing
rastic changes in the brain graph registration operation. Hence, the
lug-in GNN learning remains steady when trained on the registered
rain graphs, which slightly changes in each run as a result of end-
o-end learning. We note that this parameter can be tuned differently
ased on the input graph dataset. We chose ADAM (Kingma and Ba,
014) as our default optimizer and set the learning rate at 0.0001
or the GNN and 0.0001 for the registration network, 0.001 for the
iscriminator of the gGAN. We set the exponential decay rate for the
irst-moment estimates (i.e., beta 1) to 0.5, and the exponential decay
ate for the second-moment estimates (i.e., beta 2) to 0.999 for the
DAM optimizer. We set the weight decay of GCN and GAT to 0.00005
nd 0.00001 for DiffPool and g-U-Nets. We use the same learning
ates and weight decay values for the benchmarking conventional GNN
lassifiers. Lastly, other parameters, for instance, the number of epochs

2 $http://fcon_1000.projects.nitrc.org/indi/abide/.
3 Data used in preparation of this article were obtained from

he Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
adni.loni.usc.edu). As such, the investigators within the ADNI contributed
o the design and implementation of ADNI and/or provided data but did
ot participate in analysis or writing of this report. A complete listing
f ADNI investigators can be found at: https://adni.loni.usc.edu/wp-
6

ontent/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf. b
or the number of neurons of the hidden layers for the corresponding
GNNs are varied by applying hyper-parameter tuning for each dataset.

Comparison methods. We compared our framework with the con-
ventional GNNs respectively GCN, GAT, DiffPool, and g-U-Nets that
are used as classifiers in our framework to evaluate the impact on
classification accuracy.

Evaluation. We evaluate our framework using 5-fold cross-
validation (CV) and report the mean prediction results. We also use
5-fold CV to evaluate the benchmark methods (Kipf and Welling, 2017;
Veličković et al., 2018; Ying et al., 2019; Gao and Ji, 2019).

Results and benchmarking. In this work, we proposed GRN, a
eometric deep learning framework that has a graph registration net-
ork plugged into a target graph neural network. First, our registration
etwork registers brain graphs to a prior connectional brain template
CBT) where the distribution of each input brain graph is aligned with
hat of the given CBT. Second, the GNN of our framework is trained
sing the registered brain graphs to predict their class labels. These
wo networks work together dependently by back-propagating with a
oint loss and learn from each other in this wise.

We firstly report the Principal Component Analysis (PCA) projection
f the brain graphs and their registered versions for ASD/NC con-
ectional dataset in Fig. 4 to evaluate between-class separability of
egistered brain graphs. We also display the CBT projection in yellow
ith the original brain graphs and also their registered versions. We

how that the registered brain graphs of both classes are more separable
han the original brain graphs.

We conducted sixteen different experiments, using two datasets with
eft and right hemisphere and four conventional GNNs as classification
etworks. For each dataset, we trained them with four different GNN
lassifiers to our registration network. Then, we trained each dataset
ith the four classifiers without using the registration network to eval-
ate the impact on the brain graph classification accuracy. As shown in
able 2, our GRN model remarkably boosted the prediction accuracy
f conventional GNN methods resulting in 75% accuracy increase in
2 out of 16 experiments. Furthermore, our method was successful
n both ASD/NC and AD/LMCI datasets, which implies that GRN can
andle heterogeneous data distributions. Hence, it is generalizable to
ny task. Also, results show that our graph registration network model
utperformed four different kinds of GNNs, which indicates that GRN
an work with any GNN that aims to handle any other task such as link
rediction, graph regression, and node classification to boost its per-
ormance. Overall, our graph registration strategy achieved remarkable
erformance in brain graph classification task and showed that graph
egistration to a prior graph template (i.e., CBT) is highly recommended
or graph-based learning tasks.
Biological markers of ASD/NC population. We further investi-

ated our experiment results to identify connectional biomarkers that
istinguish between Autism (ASD) and normal control (NC) brains.
s we aim to find the most discriminative biomarkers, we select the
ethod with the highest prediction performance for each dataset. Next,
e extract their learned weights to display the discriminative power of
ach brain ROI between ASD and NC as displayed in Fig. 5. For the
eft hemisphere, According to Table 2, we chose GRN with GCN, which
esulted in 57.08% prediction accuracy as the best among all methods.
e discovered that the isthmus-cingulate cortex and insula cortex are

he most discriminative biomarkers for autism. The isthmus-cingulate
ortex is responsible for social behavior impairment and abnormal
unctional activity in social tasks in ASD (Doyle-Thomas et al., 2012).
lso, hypoactivation and dysconnectivity during emotional and social

asks in ASD are associated with dysfunctional insula cortex by many
esearches (Di Martino et al., 2009; Bird et al., 2010). For the right
emisphere (RH), we drive the learned weights of GCN since GCN
ad the best prediction accuracy of 57.7%. We selected the ROIs
ith the most discriminative power such as lateral orbital frontal

ortex and posterior cingulate cortex. We indicate that the human

rain has hemispheric asymmetries that naturally develop (Wada et al.,

http://fcon_1000.projects.nitrc.org/indi/abide/
https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
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Table 2
Prediction accuracy (Acc), precision (Prec), and recall (Rec) of GRN combined with benchmark GNNs and benchmark GNNs themselves. We emphasize in bold the best performing
method for each GNN architecture. ASD: autism spectrum disorder. NC: normal control. AD: Alzheimer’s disease. LMCI: late mild cognitive impairment. LH: Left hemisphere. RH:
Right hemisphere. WB: whole brain.

Datasets ASD/NC AD/LMCI

LH RH WB LH RH WB

Acc Prec Rec Acc Prec Rec Acc Prec Rec Acc Prec Rec Acc Prec Rec Acc Prec Rec

GRN(GCN) 𝟓𝟕.𝟎𝟖 𝟓𝟔.𝟕𝟓 𝟓𝟔.𝟔 57 56.67 56.66 𝟓𝟕.𝟒 𝟓𝟕.𝟏 𝟓𝟕.𝟎𝟖𝟑 𝟓𝟒.𝟏𝟓 𝟓𝟒.𝟑𝟏 𝟓𝟒.𝟐𝟖 𝟓𝟑.𝟖𝟔 𝟓𝟒.𝟑𝟏 𝟓𝟒.𝟐𝟖 𝟓𝟒.𝟎𝟎𝟓 𝟓𝟑.𝟕𝟖 𝟓𝟑.𝟖𝟎
GCN (Kipf and Welling, 2017) 52.5 52.52 52.5 𝟓𝟕.𝟕 𝟓𝟕.𝟓𝟏 𝟓𝟕.𝟓 55.1 55.15 55 52.46 52.08 52.083 50.46 50.42 50.41 51.46 51.25 51.24

GRN(GAT) 49.67 49.58 49.58 56.25 56.28 56.25 52.96 52.95 52.91 𝟓𝟓.𝟎𝟖 𝟓𝟒.𝟔𝟐 𝟓𝟒.𝟓𝟐 𝟓𝟑.𝟓𝟒 𝟓𝟐.𝟑𝟔 𝟓𝟐.𝟑𝟖 𝟓𝟒.𝟑𝟏 𝟓𝟑.𝟕𝟖 𝟓𝟑.𝟖𝟎
GAT (Veličković et al., 2018) 𝟓𝟔.𝟔𝟔 56.28 56.25 𝟓𝟕.𝟓 57.52 57.5 𝟓𝟕.𝟎𝟖 𝟓𝟔.𝟔𝟖 𝟓𝟔.𝟔𝟔 𝟓𝟑.𝟖𝟒 51.91 51.90 48.52 47.1 47.14 51.18 51.75 51.66

GRN(DiffPool) 𝟓𝟑.𝟕𝟓 𝟓𝟑.𝟕𝟗 𝟓𝟑.𝟕𝟓 𝟓𝟔.𝟑 𝟓𝟔.𝟐𝟖 𝟓𝟔.𝟐𝟓 𝟓𝟓.𝟎𝟐𝟓 𝟓𝟓.𝟎𝟓 𝟓𝟓 55.54 54.75 54.52 𝟓𝟐.𝟒𝟐 𝟓𝟐.𝟖𝟗 𝟓𝟐.𝟖𝟓 𝟓𝟑.𝟗𝟖 𝟓𝟑.𝟐 𝟓𝟑.𝟎𝟗
DiffPool (Ying et al., 2019) 53.3 52.93 52.91 53.47 53.34 53.33 53.33 52.92 52.91 𝟓𝟗.𝟖𝟒 𝟓𝟖.𝟑 𝟓𝟖.𝟑𝟑 47.53 46.42 46.42 53.685 52.36 52.38

GRN(g-U-Nets) 𝟓𝟐.𝟗𝟒 𝟓𝟐.𝟗𝟏𝟔 𝟓𝟐.𝟒𝟔𝟐 𝟓𝟏.𝟗𝟗 𝟓𝟏.𝟔𝟖 𝟓𝟏.𝟔𝟔 𝟓𝟐.𝟒𝟔𝟓 𝟓𝟐.𝟎𝟗 𝟓𝟐.𝟎𝟖 𝟔𝟒.𝟒𝟔 𝟔𝟑.𝟎𝟐 𝟔𝟑.𝟎𝟗 𝟓𝟐.𝟖𝟏 𝟓𝟐.𝟑𝟔 𝟓𝟐.𝟑𝟖 𝟓𝟖.𝟔𝟑𝟓 𝟓𝟖.𝟑 𝟓𝟖.𝟑𝟑
g-U-Nets (Gao and Ji, 2019) 49.59 49.58 49.58 51.17 50.85 50.83 50.38 50 50 57.23 60.85 65 37.23 44.3 42.66 47.23 40.38 37
Fig. 4. The Principal Component Analysis (PCA) projection of the brain graphs and their registered versions along with the CBT.
1975) or through the asymmetric alteration under the influence of
autism (Chiron et al., 1995; Herbert et al., 2005), which explains
the different biomarker findings for the left and right hemisphere.
According to Watanabe et al. (2014), restricted and repetitive behaviors
in ASD is linked with lateral orbital frontal cortex. Additionally, Hau
et al. (2019) states that there is a significant alteration in development
trajectory in ASD compared to NC in the right hemisphere while both
groups followed a similar development in the left hemisphere.

Biological markers of AD/LMCI population. As shown in Table 2,
GRN with g-U-Nets was the most successful method out of all methods
as it achieved 64.46% classification accuracy for the left hemisphere
(LH) of AD/LMCI dataset. Note that this is a very difficult classification
task since the brain undergoes subtle changes between both LMCI and
AD states—these are difficult to tease apart (Dhifallah and Rekik,
2020). The two most discriminative biomarkers were the unmeasured
corpus callosum and superior frontal gyrus (Fig. 5). Changes in the
corpus callosum that are already present in LMCI continue to expand
in AD (Di Paola et al., 2010), which justifies the discriminative power
of the corpus callosum. Likewise, the superior frontal gyrus, which is
known to be laboriously responsible for various cognitive and motor
control tasks (Boisgueheneuc et al., 2006; Li et al., 2013), marked the
difference between LMCI and AD patients and is considered as one
of the strong biomarkers of LMCI patient conversion to Alzheimer’s
disease (AD) (Drzezga et al., 2003). As for the right hemisphere (RH),
we select (GRN + GCN) architecture which achieved a 53.86% clas-
sification accuracy and we identify the isthmus-cingulate cortex and
bank of the superior temporal sulcus as the most discriminative ROIs.
The isthmus-cingulate cortex is associated with cognitive decline and
executive dysfunction (Wei et al., 2018) and hemispheric asymmetry
was better preserved in the bank of the superior temporal sulcus in
MCI but lost in AD patients (Long et al., 2013).
7

Limitations and recommendations for future work. Although
our graph registration network produced the best results in a variety
of brain graph classification tasks, there are a few limitations that we
are keen to point out for further investigation. First, the proposed GRN
particularly works on uni-modal brain graphs with only one edge type,
which overlooks the multigraph representation of brain connectivity
that better models different types of interactions between brain re-
gions (Gürbüz and Rekik, 2021; Chaari et al., 2020; Banka et al., 2020).
Specifically, edge types can vary according to deployed connectivity
measures for modeling the relation between brain regions such as
morphological dissimilarity derived from structural T1-weighted MRI
or functional connectivity derived from resting-state functional MRI—
to name just a few. Therefore, we aim to optimize our GRN model to
operate on multi-modal brain graphs in order to capture the relational
connectomic features. Second, we use netNorm (Dhifallah and Rekik,
2019) to construct a connectional brain template (CBT) for the target
registration task. netNorm uses a simple multigraph population process-
ing pipeline that is dichotomized into different stages, each optimized
individually. This might lead to error accumulation throughout the
whole pipeline. To address this weakness, recently (Gurbuz and Rekik,
2020) proposed the deep graph normalizer (DGN), which is the first
GNN architecture for normalizing a population of brain graphs to
integrate them into a CBT. Since our framework is generic, the user
has the liberty to test more advanced CBT estimation methods such
as Gurbuz and Rekik (2020), Gürbüz and Rekik (2021).

4. Conclusion

In this paper, we proposed a template-based graph registration
network that can be used as a plug-in to boost the performance of
graph neural network architectures. Our model is composed of two
major parts, respectively a graph registration network (GRN) and a
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Fig. 5. The learned weights for each cortical region by the best performing method for the four datasets. ASD: autism spectrum disorder. NC: normal control. AD: Alzheimer’s disease.
LMIC: late mild cognitive impairment. LH: left hemisphere. RH: right hemisphere.
GNN. GRN is a gGAN, which registers each input brain graph to a
prior connectional brain template (CBT) to enhance their individual
connectivity features. Both networks are trained in an end-to-end fash-
ion while optimizing a joint loss function. Our results showed that
GRN remarkably boosts the classification accuracy of GNN models
across 4 clinical datasets and hence is a successful framework for brain
graph classification. Our plug-in GRN is a generic model. It can be
trained using any type of graph templates (e.g., genomic and any omic
8

template) and can be coupled with any GNN architecture. In our future

work, we will extend our GRN to handle multi-modal brain graphs

for a better modeling of the multiple interaction types between brain

regions.
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Code availability

An open-source Python implementation of GRN is available on
GitHub at https://github.com/basiralab/GRN. The release includes a
demo using simulated data and notes regarding Python packages, which
need to be installed. Information regarding input format can be also
found in the same repository.
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